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The integal corresponding to the smeared intensity scattered by uniform spheres and observed with a slit 
of infinite height and negligible width, is solved in the form of an asymptotic series. The present result 
complements Schmidt's solution in the form of a convergent series. The combination of both methods 
enables a fast and accurate computation of the integral for any value of the argument with no need for tables 
of Bessel functions and/or numerical integration. 

In the theory of small-angle X-ray scattering by uniform 
spheres one encounters the integral 

? I (x) = i (z)dy ( 1 ) 
0 

i 

where z=  (x2+y2) l/z, and the functionii(z) is defined by 

i(z) = (sin z - z cos z)2/z 6. (2) 

This integral corresponds to the smeared scattered intensity 
observed for slits of infinite height and negligible width. It 
is useful as a test function for collimation-correction pro- 
grams (Schmidt, 1955) as well as for direct comparison with 
experimental data on systems containing spherical particles 
[such as latexes (Bonse & Hart, 1967)]. The integral l(x) 
can be expressed in terms of the Bessel function J0(2x), its 
derivative J0(2x) and its integral 

Jo(2X) = I2oX jo(~)d, ; 

hence, it is easily accessible in the common range of the 
variable x (Schmidt, 1955). For high values of the argument 
x, however, tables of J0(2x) may not be available, and in 
the absence of other formulas, one would have to resort 
to numerical integration. In this note, we present an asymp- 
totic solution for I(x) which can be used with good accuracy 
for x > 6. 

After rebresenting sin z and cos z of the integrand by 
functions of double argument, the integral l(x) can be split 
in two parts 

I(x) = IA(x) + In(x) (3) 
where 

I'~ ( z 2 + l )  zc ( 3 ) 
I t ( x )=  x 2z~-~--x-~) 1/2 dz=  ~ 1+ ~ (4) 

In(x)=½ 1 ~x (z 2 -  1) COSz S(z(2Z)- 2 z 2  _ x2)V2 sin (2z) dz . (5) 

The second integral can be solved by substitution of 
z=x(1  +2~). This operation leads to Fourier integrals of 
the form 

/~(x) = l ~o exp (4ix~) d~ n = 3, 4, 5 (6) 
0 ~U2(1 -k- ~) ' /2(1  -b 2~)" ' 

which can be expressed as asymptotic series (Erd61yi, 
1956) 

M--I  
ln(X)=½(i/x) 1/2 ~ imXm(n)+O(x -M) a s  Ixl ~ c ~ ,  (7)  

m=O 

where 
-½ 

The order O(x -M) of the remainder in (7) is applied in the 
sense defined by Erd6lyi (1956), and it does not necessarily 
imply that the absolute value of the remainder should be of 
the order of magnitude of x-M. Since the numerical estimate 
of the remainder does not seem to be trivial, we refrained 
from this problem. 

The sought integral In(x) of equation (5) can thus be ap- 
proximated as 

In(x) "" 2-S/2x-7/2 
x {cos (2x) ~ [rmXm(3) 

m = 0  

- 2x-  lamXm(4) - x -  2rmXm(5)] 

-- sin (2x) ~ [amXm(3) + 2x-  lrmXm(4) 
m = 0  

-x-2amXm(5)]} (9) 

where rm and am represent the sign sequences 

r m = ( -  1) t°'+m2J, a m = ( -  1) tm/2J 

with [hi denoting the largest integer which is not greater 
than h. After performing the arithmetic operations indicated 
in equations (8) and (9) the result reduces to the form 

In(x) = In. L(X) 
: - - k X  -7[2 [sin (2x-¼zO ~ A2kx -2~ 

k=O 
[(L-- 1 )/21 

- c o s  ( 2 x - k r 0  ~ A2~+lx -(2k+1~] (10) 
k = 0  

where A~ are constants given in Table 1, and L is the max- 
imum value of the subscripts I employed in the computation. 

Table 1. Constants for the asymptotic expansion (10) 

1 Al l At 
0 1.7724539 10 7.5379929 x 102 
1 --2-1047889 11 3.9856496 x 103 
2 --2.8040774x 10 -1 12 --2.3038778x 104 
3 1.3695841 x 10 -1 13 -- 1"4457277 x 105 
4 --3-7751798 x 10 -1 14 9.7892716 x l0 s 
5 --9.6817077 x 10 -1 15 7.1148705 x l0 s 
6 2.8296517 16 --5-5250730 x 107 
7 9.5165418 17 --4.5656501 x 108 
8 --3.6455084x 101 18 4-0003589x 109 
9 - 1.5714058 x 102 19 3.7045300x 101° 

Since the asymptotic series (10) for IB(x) is not  conver- 
gent, there exists a certain optimum value of L which gives 
the best estimate for ln(x). By analysis of the numerical data, 
it was found that a good estimate of the maximum error in 
In. L(x) is given by the sum of the two immediately following 
increments 

err [IB, L(X)] ~ Iln, L+2(X)-- In, L(X)i • (11) 
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Hence, as the best estimate of 1B(x) we took IB. L(x) such Table 2 contains reduced values of the integral, 1,(x)= 
that either err lIB. ,(x)] < e[la(x) + I~. L(x)] where e was some 15I(x)/n, for 20 < x < 50 with x varying in steps of 0.5. For  
predetermined small number, or err [IB, L(x)] reached a 4 <  x <  20, the asymptotic expansion yields results identical 
minimum value. With e =  1 x 10 -7 the former criterion was to the five-digit data given in Schmidt's (1955) tables which 
effective for x > 7.7, whereas the latter criterion had to be cover the range of x up to x =  20. Maxima and minima of 
used in most other cases.* I(x) .for x >  8 are listed in Table 3. Here again, the asymp- 

The results obtained from the asymptotic series in the 
above manner  are surprisingly good. As compared to the 
converging series calculation, which was performed with 
relative accuracy better than 3 x 1 0  - 7  for x <  7, the relative 
error is smaller than 1 x 10 -5 for x>_5 and smaller than 
I x 10 -6 for x>_6. The number of series terms Azx -z in 
equation (10) required for calculation does not exceed eight 
for x > 1 0 .  The combination of both methods, i.e. the 
converging and asymptotic series expansion, thus enables 
a fast and accurate calculation of l(x) for any value of the 
argument with no need for tables of Bessel functions, for in- 
terpolation of tabulated values, or for numerical integration. 
The excellent agreement in the overlapping range indicates 
that the convergent and asymptotic series calculations are 
to be preferred to numerical integration. The tables based 
on the latter method (Anderegg, 1952; Bonse & Hart, 
1967) contain errors of up to 1% and 2.3 % respectively. 

* A Fortran subroutine for computing I(x) from the series 
is available on request. 

Table 2. Values of  the reduced integral l,(x) obtained 
from the asymptotic expansion formula 

x 

20"0 
20.5 
21"0 
21-5 
22-0 
22-5 
23 "0 
23 "5 
24-0 
24.5 
25"0 
25 "5 
26.0 
26.5 
27-0 
27.5 
28.0 
28.5 
29.0 
29"5 
30.0 

L(x)x 10 5 x L(x) x l0 s x L(x) x l0 s 
17"560 30"5 7-3352 40"5 3"3200 
18"880 31"0 7"5750 41"0 2"9251 
22"363 31"5 6"6643 41"5 2"3796 
23"447 32"0 5"2607 42"0  2"0911 
20"413 32"5 4"3966 42"5 2"2116 
15"383 33"0 4"5427 43"0 2"5245 
11"951 33"5 5"2563 43"5 2"6641 
11-919 34-0 5-6574 44"0  2"4498 
14"018 34-5  5"2375 44"5 2"0302 
15-408 35"0 4"2648 45"0  1"7271 
14"300 35"5 3"4743 45"5 1"7376 
11-332 36"0 3"3812 46-0 1"9699 
8"6984 36-5  3"8512 46"5 2"1452 
8"0709 37"0 4"2780 47"0 .2"0580 
9-2295 37"5 4"1562 47"5 1-7525 

10"484 38"0 3"5138 48"0  I'4648 
10"302 38"5 2"8393 48"5 1"4009 
8"6010 39"0 2"6127 49"0  1"5557 
6"6479 39-5  2"8849 49"5 1"7326 
5"8055 40"0  3"2697 50"0 1"7307 
6"3456 

totic expansion agrees with Schmidt's (1955) data extending 
up to x < 20 (only in two cases there is one-unit difference 
in the fifth significant digit). 

Table 3. Extrema of lr(x) obtainedJ'rom the asymptotic 
expansion Jormula 

Maxima Minima 
k x h(x) x l0 s x h(x) x 105 
2 8 " 6 2 8 3  383"32 10"675 103"39 
3 1 1 " 8 5 2  144"94 13"821 50"295 
4 15"043 69"615 16"964 28"233 
5 18"218 38"602 20"105 17"433 
6 21"384 23"568 ' 23"246 11"523 
7 24"544 15"419 26"386 8"0164 
8 27"701 10"627 29"526 5"8034 
9 30"855 7"6282 32"666 4"3376 

10 34"007 5"6575 35"807 3"3279 
11 37"157 4"3098 38"947 2"6096 
12 40"306 3"3575 42"087 2"0845 
13 43"454 2"6657 45"227 1"6917 
14 46"602 2"1513 48"368 1"3919 
15 49"748 1"7609 51"508 I"1592 
16 52"895 1"4593 54"649 0"97568 
17 56"040 1"2227 57"789 0"82905 
18 59"186 1"0345 60"930 0"71046 
19 62"331 0"88294 64"070 0"61350 
20 65"476 0"75954 67"211 0"53345 
21 68"620 0"65806 70"352 0"46677 
22 71"765 0"57384 73"492 0"41078 
23 74"909 0"50338 76"633 0"36342 

Thanks are due to Dr  R. L. Miller for calling this problem 
to the author 's  attention. The author  also wishes to thank 
Dr P. W. Schmidt for his helpful comments.  
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